Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
ACS Pharmacol Transl Sci ; 6(1): 181-194, 2023 Jan 13.
Article in English | MEDLINE | ID: covidwho-2185539

ABSTRACT

The advent of SARS-CoV-2, the causative agent of COVID-19, and its worldwide impact on global health, have provided the impetus for the development of effective countermeasures that can be deployed against the virus, including vaccines, monoclonal antibodies, and direct-acting antivirals (DAAs). Despite these efforts, the current paucity of DAAs has created an urgent need for the creation of an enhanced and diversified portfolio of broadly acting agents with different mechanisms of action that can effectively abrogate viral infection. SARS-CoV-2 3C-like protease (3CLpro), an enzyme essential for viral replication, is a validated target for the discovery of SARS-CoV-2 therapeutics. In this report, we describe the structure-guided utilization of the cyclopropane moiety in the design of highly potent inhibitors of SARS-CoV-2 3CLpro, SARS-CoV-1 3CLpro, and MERS-CoV 3CLpro. High-resolution cocrystal structures were used to identify the structural determinants associated with the binding of the inhibitors to the active site of the enzyme and unravel the mechanism of action. Aldehydes 5c and 11c inhibited SARS-CoV-2 replication with EC50 values of 12 and 11 nM, respectively. Furthermore, the corresponding aldehyde bisulfite adducts 5d and 11d were equipotent with EC50 values of 13 and 12 nM, respectively. The safety index (SI) values for compounds 5c / 11c and 5d / 11d ranged between 7692 and 9090. Importantly, aldehydes 5c / 11c and bisulfite adducts 5d / 11d potently inhibited MERS-CoV 3CLpro with IC50 values of 80 and 120 nM, and 70 and 70 nM, respectively. Likewise, compounds 5c / 11c and 5d / 11d inhibited SARS-CoV-1 with IC50 values of 960 and 350 nM and 790 and 240 nM, respectively. Taken together, these studies suggest that the inhibitors described herein have low cytotoxicity and high potency and are promising candidates for further development as broad-spectrum direct-acting antivirals against highly pathogenic coronaviruses.

2.
J Med Chem ; 65(11): 7818-7832, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1873394

ABSTRACT

The worldwide impact of the ongoing COVID-19 pandemic on public health has made imperative the discovery and development of direct-acting antivirals aimed at targeting viral and/or host targets. SARS-CoV-2 3C-like protease (3CLpro) has emerged as a validated target for the discovery of SARS-CoV-2 therapeutics because of the pivotal role it plays in viral replication. We describe herein the structure-guided design of highly potent inhibitors of SARS-CoV-2 3CLpro that incorporate in their structure novel spirocyclic design elements aimed at optimizing potency by accessing new chemical space. Inhibitors of both SARS-CoV-2 3CLpro and MERS-CoV 3CLpro that exhibit nM potency and high safety indices have been identified. The mechanism of action of the inhibitors and the structural determinants associated with binding were established using high-resolution cocrystal structures.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Humans , Pandemics , Peptide Hydrolases , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2
3.
J Med Chem ; 64(24): 17846-17865, 2021 12 23.
Article in English | MEDLINE | ID: covidwho-1555306

ABSTRACT

The COVID-19 pandemic is having a major impact on public health worldwide, and there is an urgent need for the creation of an armamentarium of effective therapeutics, including vaccines, biologics, and small-molecule therapeutics, to combat SARS-CoV-2 and emerging variants. Inspection of the virus life cycle reveals multiple viral- and host-based choke points that can be exploited to combat the virus. SARS-CoV-2 3C-like protease (3CLpro), an enzyme essential for viral replication, is an attractive target for therapeutic intervention, and the design of inhibitors of the protease may lead to the emergence of effective SARS-CoV-2-specific antivirals. We describe herein the results of our studies related to the application of X-ray crystallography, the Thorpe-Ingold effect, deuteration, and stereochemistry in the design of highly potent and nontoxic inhibitors of SARS-CoV-2 3CLpro.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Chlorocebus aethiops , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/metabolism , Drug Design , HEK293 Cells , Humans , Hydrogen Bonding , Microbial Sensitivity Tests , Molecular Structure , Protein Binding , SARS-CoV-2/enzymology , Stereoisomerism , Vero Cells
4.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: covidwho-1294550

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to be a serious global public health threat. The 3C-like protease (3CLpro) is a virus protease encoded by SARS-CoV-2, which is essential for virus replication. We have previously reported a series of small-molecule 3CLpro inhibitors effective for inhibiting replication of human coronaviruses including SARS-CoV-2 in cell culture and in animal models. Here we generated a series of deuterated variants of a 3CLpro inhibitor, GC376, and evaluated the antiviral effect against SARS-CoV-2. The deuterated GC376 displayed potent inhibitory activity against SARS-CoV-2 in the enzyme- and the cell-based assays. The K18-hACE2 mice develop mild to lethal infection commensurate with SARS-CoV-2 challenge doses and were proposed as a model for efficacy testing of antiviral agents. We treated lethally infected mice with a deuterated derivative of GC376. Treatment of K18-hACE2 mice at 24 h postinfection with a derivative (compound 2) resulted in increased survival of mice compared to vehicle-treated mice. Lung virus titers were decreased, and histopathological changes were ameliorated in compound 2-treated mice compared to vehicle-treated mice. Structural investigation using high-resolution crystallography illuminated binding interactions of 3CLpro of SARS-CoV-2 and SARS-CoV with deuterated variants of GC376. Taken together, deuterated GC376 variants have excellent potential as antiviral agents against SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Protease Inhibitors/therapeutic use , Pyrrolidines/therapeutic use , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/pathology , Coronavirus 3C Proteases/chemistry , Coronavirus Papain-Like Proteases/chemistry , Crystallography, X-Ray , Deuterium , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Lung/pathology , Mice , Mice, Transgenic , Models, Molecular , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Conformation , Pyrrolidines/chemistry , SARS-CoV-2/enzymology , Sulfonic Acids , Transgenes
5.
J Med Chem ; 64(14): 10047-10058, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1294430

ABSTRACT

A series of nondeuterated and deuterated dipeptidyl aldehyde and masked aldehyde inhibitors that incorporate in their structure a conformationally constrained cyclohexane moiety was synthesized and found to potently inhibit severe acute respiratory syndrome coronavirus-2 3CL protease in biochemical and cell-based assays. Several of the inhibitors were also found to be nanomolar inhibitors of Middle East respiratory syndrome coronavirus 3CL protease. The corresponding latent aldehyde bisulfite adducts were found to be equipotent to the precursor aldehydes. High-resolution cocrystal structures confirmed the mechanism of action and illuminated the structural determinants involved in binding. The spatial disposition of the compounds disclosed herein provides an effective means of accessing new chemical space and optimizing pharmacological activity. The cellular permeability of the identified inhibitors and lack of cytotoxicity warrant their advancement as potential therapeutics for COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cyclohexanes/pharmacology , Drug Design , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Coronavirus 3C Proteases/metabolism , Cyclohexanes/chemical synthesis , Cyclohexanes/chemistry , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Conformation , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , COVID-19 Drug Treatment
6.
J Virol ; 95(3)2021 01 13.
Article in English | MEDLINE | ID: covidwho-1039853

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-related CoVs encode 3 tandem macrodomains within nonstructural protein 3 (nsp3). The first macrodomain, Mac1, is conserved throughout CoVs and binds to and hydrolyzes mono-ADP-ribose (MAR) from target proteins. Mac1 likely counters host-mediated antiviral ADP-ribosylation, a posttranslational modification that is part of the host response to viral infections. Mac1 is essential for pathogenesis in multiple animal models of CoV infection, implicating it as a virulence factor and potential therapeutic target. Here, we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose. SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) Mac1 domains exhibit similar structural folds, and all 3 proteins bound to ADP-ribose with affinities in the low micromolar range. Importantly, using ADP-ribose-detecting binding reagents in both a gel-based assay and novel enzyme-linked immunosorbent assays (ELISAs), we demonstrated de-MARylating activity for all 3 CoV Mac1 proteins, with the SARS-CoV-2 Mac1 protein leading to a more rapid loss of substrate than the others. In addition, none of these enzymes could hydrolyze poly-ADP-ribose. We conclude that the SARS-CoV-2 and other CoV Mac1 proteins are MAR-hydrolases with similar functions, indicating that compounds targeting CoV Mac1 proteins may have broad anti-CoV activity.IMPORTANCE SARS-CoV-2 has recently emerged into the human population and has led to a worldwide pandemic of COVID-19 that has caused more than 1.2 million deaths worldwide. With no currently approved treatments, novel therapeutic strategies are desperately needed. All coronaviruses encode a highly conserved macrodomain (Mac1) that binds to and removes ADP-ribose adducts from proteins in a dynamic posttranslational process that is increasingly being recognized as an important factor that regulates viral infection. The macrodomain is essential for CoV pathogenesis and may be a novel therapeutic target. Thus, understanding its biochemistry and enzyme activity are critical first steps for these efforts. Here, we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose and describe its ADP-ribose binding and hydrolysis activities in direct comparison to those of SARS-CoV and MERS-CoV Mac1 proteins. These results are an important first step for the design and testing of potential therapies targeting this unique protein domain.


Subject(s)
N-Glycosyl Hydrolases/metabolism , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/metabolism , Adenosine Diphosphate Ribose/chemistry , Adenosine Diphosphate Ribose/metabolism , Amino Acid Sequence , Coronavirus/chemistry , Coronavirus/enzymology , Coronavirus/metabolism , Crystallography, X-Ray , Humans , Hydrolysis , Kinetics , N-Glycosyl Hydrolases/chemistry , Protein Binding , Protein Domains , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/chemistry
7.
Sci Transl Med ; 12(557)2020 08 19.
Article in English | MEDLINE | ID: covidwho-694565

ABSTRACT

Pathogenic coronaviruses are a major threat to global public health, as exemplified by severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the newly emerged SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19). We describe herein the structure-guided optimization of a series of inhibitors of the coronavirus 3C-like protease (3CLpro), an enzyme essential for viral replication. The optimized compounds were effective against several human coronaviruses including MERS-CoV, SARS-CoV, and SARS-CoV-2 in an enzyme assay and in cell-based assays using Huh-7 and Vero E6 cell lines. Two selected compounds showed antiviral effects against SARS-CoV-2 in cultured primary human airway epithelial cells. In a mouse model of MERS-CoV infection, administration of a lead compound 1 day after virus infection increased survival from 0 to 100% and reduced lung viral titers and lung histopathology. These results suggest that this series of compounds has the potential to be developed further as antiviral drugs against human coronaviruses.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/drug effects , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects , Animals , Antiviral Agents/chemistry , Betacoronavirus/physiology , COVID-19 , Cell Line , Chlorocebus aethiops , Coronavirus 3C Proteases , Coronavirus Infections/pathology , Crystallography, X-Ray , Cysteine Endopeptidases/chemistry , Disease Models, Animal , Humans , In Vitro Techniques , Lung/pathology , Lung/virology , Male , Mice , Mice, Transgenic , Microbial Sensitivity Tests , Middle East Respiratory Syndrome Coronavirus/physiology , Models, Molecular , Pandemics , Protease Inhibitors/chemistry , SARS-CoV-2 , Small Molecule Libraries , Species Specificity , Static Electricity , Translational Research, Biomedical , Vero Cells , Viral Load/drug effects , Viral Nonstructural Proteins/chemistry , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL